Stochastic Wilson-Cowan models of neuronal network dynamics with memory and delay
نویسندگان
چکیده
We consider a simple Markovian class of the stochastic Wilson-Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. PACS numbers: 05.40.-a,87.19.lc,87.19.lj,87.19.ll
منابع مشابه
Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics.
We analyze a stochastic model of neuronal population dynamics with intrinsic noise. In the thermodynamic limit N→∞ , where N determines the size of each population, the dynamics is described by deterministic Wilson-Cowan equations. On the other hand, for finite N the dynamics is described by a master equation that determines the probability of spiking activity within each population. We first c...
متن کاملLimits and dynamics of stochastic neuronal networks with random heterogeneous delays
Realistic networks display heterogeneous transmission delays. We analyze here the limits of large stochastic multi-populations networks with stochastic coupling and random interconnection delays. We show that depending on the nature of the delays distributions, a quenched or averaged propagation of chaos takes place in these networks, and that the network equations converge towards a delayed Mc...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملT-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY
A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...
متن کاملOn a Gaussian neuronal field model
Can we understand the dynamic behaviour of leaky integrate-and-fire (LIF) networks, which present the major, and possibly the only, analytically tractable tool we employ in computational neuroscience? To answer this question, here we present a theoretical framework on the spike activities of LIF networks by including the first order moment (mean firing rate) and the second order moment statisti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015